Kybernetika - 12 (1976), 2

ACADEMIA
PRAHA




KYBERNETIKA — VOLUME [2 (1976}, NUMBER 2

On Networks of Non-Deterministic Automata

KARL-ADOLF ZECH

In the present paper it is shown that in the structure theory of non-deterministic automata
(NDA} it is sufficient to consider only two standard network forms. The conditions are stated
under which an NDA can be isomorphically embedded in a network of smaller NDA’s with
proper output, It turns out that every finite NDA has a decompaosilion into a network of this
type. Finally, the conditions for the existence of a decomposition the components of which
realize the network output are derived. The results are stated and proved for the special case
of two-component networks.

0. INTRODUCTION

In this paper we investigate the properties of finite non-deterministic {i.e. possibilis-
tic) automata (ND-automata or NDA, for short), which are isomorphically embedded
in networks of simpler NDA’s, We start with the definition of different network
conceptions and show that in structural investigations we can restrict our attention
to two standard forms only.

The algebraic structure theory of non-deterministic automata is a generalization
of the structure theory of finite deterministic automata [1], and it is strongly related
to the problem of realizing a given NDA by a non-deterministic switching network,
j.e. to the state coding problem for ND-automata. In [3] these questions had been
investigated for a network conception the components of which are ND-semiauto-
mata depending merely on the present states of the rest of the components in addition
to the external input of the total network and their own present states. Hence, the
next states of each component, which are members of a non-empty set of possible
next states, must be chosen independently of the next states of all other components.
This is an essential restriction leading to the fact that not every NDA can be embed-
ded isomorphically into some network of this type. However, for every NDA &
there exists a network of independent operating components embedding &/ homo-
morphically [3].




In the following, we investigate the effects of allowing the network to contain
compenents with a nontrivial non-deterministic output. In this case, it turns out
that every NIDA is isomorphic to a subautomaton of a nontrivial network of this

type.
A familiarity with [1] will facilitate the insight into this study.

1. BASIC DEFINITIONS
In the sequel we use the notation of [2].

1.1 Definition. The quadruple & = [X, Y, Z, h] is a non-deterministic (synchro-
nous) automaton (NDA) provided that

(i} X, Yand Z are non-empty sets and

{ii) h maps Z x X uniquely into the set P¥(Y x Z) of all non-empty subsets
of ¥ x Z*.

X, Y and Z, respectively, are called the input set, the output set and the set of the
inper states of &7, In any case, Z is supposed to be finite. In every timing interval,
& is 1n a certain state z in Z, reads some input signal x in X, and has the possibility
to emit the signal y in Yand to go into state z' if and only if (iff} [ v, z'] € h(z, x).
Hence, in general, the output signal and the next state depend on one another. & can
be decomposed in two ways:

If we define the functions g, f, b, and h, by

9(z. x) =g {y ! ([, 2'] € bz, x))}
hz, x) =g {2 7, 2] € bz, X)),
f(z, %) =g {2’ | 3([y, 2] € bz, X))},

Bz, x) =4 (¥ | [y, 2] € Kz, x)} .
then we have

Wz, x) = U {3} x hfz, x) =

yeg(z,x)

= U hz,x}x {'}
e f{z,x)
forallz, z’inZ, xin X and y in Y. h,. is called the conditional output function, h,
is the conditional next state function of &, while g and f are called the output func-
tion and next state function, respectively.

. * We use the symbol P(S$) to denote the set of all subsets of the set S while the asterisk means
that the empty subset is omitted.
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From the above decomposition of k it is clear that we have two ways to represent
an NDA by a “network” of output block and next state block (see Fig. 1). In structural
observations we can use both modes. But since such observations are mainly con-
cerned with the next state block, in Fig. 1(b) we can regard the output signal as an
additional input signal for the state block. Therefore we can restrict ourselves to
ND-semiautomata, denoted by & = [X, Z, f]. After decomposing .+ into a network,
as to be shown in the present paper, we can complete the realization by adding the
output block as shown in Fig. 1. However, in section 4 we consider networks the
output functions of which are realizable by their components alone.
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Fig. 1. Different modes of representing a NDA; (a) The output depends on the next state; (b}
The next state depends on the present output.

1.2. Definition. For the given NDA's o = [X, Y, Z, h] and &’ = [X', Y, Z', i},
let {1 Z - 2" be a one-to-one mapping. Then call { Z-isomorphism from

onto & iff
[y, 21 bz, x) o [y, {=)] e W(Uz). x)

forall xin X, y in Yand z, z’ in Z. &/ is called Z-isomorphic to .&/" iff there exists
& Z-somorphism from &/ to &'. For convenience, we shall denote { simply as
isomorphism.

Clearly, the two semiautomata &/ = [X, Z, f] and &' = [X, Z', ] are isomor-

phic iff 2’ e f(z, x) & (=) e f(Uz), x).

2. CONCEPTIONS FOR NON-DETERMINISTIC AUTOMATA
NETWORKS

The first part of this section Is devoted to networks the components of which are
ND-semiautomata. Of course, all automata networks are supposed to have at least
{WO COIDpOTIEnts. '

2.1. Definition. & = [X,Z, /]| is an ND-network of the first kind consisting
R
of the components o = [X, Z,fl(i=1,..,m;nz2)iff Z = _X Z,; and there

i=1




g

exist functions a;: X Z; x X - P*X ) fulfilling f([z,, ..., 2, ], x) = X flznalz,, ...,
i=1 i=1

Z,, X)) — see Fig. 2(a). According to [1] we call & network in delay form if

every f; depends only on x,, L.e. not explicitely on state z,. & is said to be in standard

form iff there exist sets S;,, ST (i,j = 1,..., n) and functions ¢t Z;~ 8, and cf:

X — S} such that afz,, ..., z,, x) = [exdzah oo ez 1 (X))

From 2.1 we see that, in general, o7; depends on its own state z, in two ways:
on the one hand the direct internal dependence on the state occupied by .o ;» and
on the other hand the external way by function a; (see [1, p. 82]). This is not the
case if the network is in delay form. (However, we shall use networks which are not
necessarily in delay form.) Without loss of generality, we regard only networks
in standard form, the functions ¢, ; and cf of which are the respective identities (see
Fig. 2(b}). We denote a network & according to definition 2.1 by N Ay, o, o,
{a a1} and a network in standard form by N (s, ..., o7,).

Bi=1,..,

‘e i
X X
1 s =
¥ 1
H .Y {11
+ 2l ‘ btz 23z ) i
1 B * * ;
—t 3 2q, ) ! AERSIIRE "1
N )
217 ZI
(a) (b)

Fig. 2. First kind networks; (a) The network & = N{(Ay, oy Fyy '{ai';zl,“_’"}} consisting of
ND-semiautomata; (b) The network & = N(#, ..., ]y in standard form.

2.2, Proposition. For every network o = [X,Z, f] = N,(#, ..., o, f@iier. )
with components «; = [X,, Z,, fi} i =1,..., n, there exists an isomorphic network
of the first kind in standard form &' = [X, Z, '] = N, (s}, ..., o}) where o} =
=[{X,Z.f{] i=1,...,n

Proof. Combine the functions a; and f; to define f}:

_ fize [zi5 -0 Za x]) =4 f{Zs ai(zu e T x)) -
Obviously, & is isomorphic fo &', a4
In the structure theory, much effort is devoted to the problem of realizing a given
automaton by a network having a reduced number of connections between its

components. The loop-free network is one important network form with reduced
complexity, The following definition gives a precise notion of foop-freedom.
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2.3. Definition. The network & of the first kind with components &, ..., =,
is called loop-free iff fi(z. (21 o Zos Zivts oo Zmo o= flzo 20 o0 20 2l -
7, x])foralli=1,....n 2z, 7;in Z.and xin X.

In the present paper, by virtue of 2.2 it is sufficient to restrict our attention o

networks in standard form.

2.4. Definition. o7 = [X, Z,f] is a network of type 24 consisting of o, = [X,
Z. /). i =1, ..., n, provided there exists a function

b

[
i

Z, x X - P{XX)
i=1

it

1
where

(21 o zp) €f([20s o vos Za] X)
e 3x; 3x, o I {[Xps oo Xyl € eZn s 20 X) A A e filzi x5)
i=1

holds. We denote such networks by Nau(fy, ... oy, €).

More generally, we regard networks the components of which do not only emit
their present states but have in addition proper non-deterministic outputs. Hence,
the output sets have the form ’YL = Z; x Y, However, we will treat only the Y’s
as the proper output sets,

1t is evident that no component is allowed thé input signal of which depends on
its own output signal at the same clock period.

Now we define this network conception, and then we show that this one and the
conception of 2.4 are both equivalent to the same standard form. This allowes us
to use standard forms only.

2.5. Definition. o = [X, Z, f]is a network of type 2B consisting of the compo-.

nents &; = [ Xy Yi Zo hili=1,.,nifZ= X Z; and thete exist functions

=3
i-1 n
e XY, x XZ,x X =>P(Xy), i=1..n,
je1 T =i

such that

[0 .- 2} € f ({240 - Zabs x} e
e Ax 3xp .o Ax, 3y Fya o 3 Vi(ji\ixjer Aj/:\ijje Y; A

N f@{l, ERRE n} - xieci(yls cies Viets Zisvees Zs X) A

Ay zi] € fz x5 -




2.6. Definition. A network of type 2B is in second kind standard form iff the values
of ail ¢;'s are either singletons of empty. i

Without loss of generality, we can identify all X/’s with a subset of X Y; x
3 i=1
x XZ;x X forie {1, ..., n}. Hence, we can regard the ¢;'s to be partially defined
i=1
mappings onto the X's.
Networks according to 2.5 and 2.6, respectively, are denoted by Nop(e? s, -

{ci;izl,...,n}) and NZ(ngs s ﬁn)

oty )

L
I

©
Fig. 3. Second &ind networks: (&) Type 2A; (b) Type 2B; {c) Second kind standard form.

2.7. Proposition. For every network of = Nop{(, .oy Fns {Ciim1,.,nj) Where
oy =X Y 2y B (i=1,... n) there exists an isomorphic network &' =
= Ny}, .o ) in standard form consisting of o} = [X}, Y Zy, bi] for 1=
e 1, ..., He

i~1 n .
Proof. Define for i=1,...,n the inpul seis ¥ =X7Y; x XZ; x X and

j=1 j=i
Wzy X3) =ar hizy edxy)) for all z; in Z; and for those x; in X such that efxi) =+ 0.
Don’t careé conditions result for all other x4, Tt can be easily shown that o/’ 1s isom-
orphic to /. 0
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o, c} where &; = [X.

2.8. Proposition. For every neiwork & = Noal# .
., .} in standard

Z. 1] (i=1,.. 1) there exists an isomorphic network N7,
form consisting of o5 = [ X5 Yo Zi B} (i = L. n).
i—1

Proof. Define Y, = X; and X; = X ¥; X XZ; % X and forall i =1,...m
f= L i=l

= -
Cxp, o} e bz, [Viseom Yiets Zin s 7o x]) ear
D T S O e D Xp] €
€ ez 20 X) A Zieflzn %)) -
This implies
[0 zlef(lz - Zo} X) <225

n
PR PUIUR- ¥ | E TP ez nZm X} A A she fizn X)) e
i=1

P LU - i { E-S T z, ) X)
which was to be proved. 3
2.9, Definition. The second kind network = Ny(ed .. o) is cailed loop-free
provided there exists a permutation p of {1, n} such that for i,j€ {1, ..., n},

Y, it j<i,
X, = { and x;, x;, in X 7 in Z;:
Z; otherwise

Lediy

X, = XX, and
i=1

fp(i)(zp(i)’ [xp(i)p(U’ ves Xp(i)peiy * Xp(idpivey? 077 Xp{i¥pny? X]) =

j— r [
= farlZpin [Xpispceys -2 Xpliagny? Xp(ipgieny =22 Koty x]}.

In other words, the p(i)-th component depends only on the components p(1), .- p(i)

and on x.

3. ISOMORPHIC EMBEDDING OF NON-DETERMINISTIC
AUTOMATA INTO NETWORKS

An NDA « is called isomorphically embedded iman NDA o iff o/ s isormorphic

to a subautomaton & of " Let o =[X,Z".f "] be a network (of the first or

second kind) which &7 is isomorphically embedded in. Each component &/; of /"

generates a parfition of the state set Z of o by means of the isomorphism { from

i




the subautomaton &’ = [X, Z', f'] of &” onto «#: 93

= {z| 0T )eZ, x o x Ziy x {2} X Z;yy x .. x Z3 |z €2}

(Thereby, empty sets are omitted.} Define the product of two partitions to be the set

n

of all non-empty intersections of their elements (blocks). Then the product 1T+
. i=1
of all partitions 7; equals the zeropartition 0, i.e. the partition containing singletons
only. Note that some of the 7;’s could be l-partitions, i.e. the trivial partition {z}.
However, throughout this paper we use only nontrivial embeddings, i.e. (1) each
component has fewer states than .« and (ii) for each component &, there exists a
state z = [zy,..., 25 ..., z,] of & such that Ja?‘- can leave z; whenever &’ leaves z.
Let {; project the inverse { ™' of { onto the i-th component Z; of Z". Then {(z) =
= {{(z') for all z, 2’ € N & 7,. Therefore we call {;(N) the image of some z in N under
{;. A partition 7 is not greater then 7 (n < 1) iff every m-block is contained in some
t-block. Thenn < tiffn £ tand = 1.

3.1. Networks of the first kind

This network conception and the corresponding decomposition theory was studied
in [3]. In this section we shall state the main results briefly.

3.1. Definition. Let M = {r,, ..., 7,},.o be a set of partitions of the state set Z of
o = [X,Z,f]. M is called independent (with respect to «7} provided that for all
zinZ, xin X and N;in 7;, i = 1,..., n, the condition

n n
AN Ofz,x) = Qe AN flz,x)+ 0
holdg. =t =1
The reader will easily see that for given o, in general, not every M is independent.
The following theorem answers the question whether or not a given NDA is de-
composable into a network of the first kind.

3.2. Theorem. An NDA o can be isomorphically embedded into some network
of the first kind consisting of n component automata iff there exists an independent
set M of n partitions of Z where [[ t = 0and 0 < ¢ < [ for all e M.

teM
Proof. Define &\, ..., o, by o, =4 [X, Z,, fi]. i = 1, ..., n, where
Xi=Ty X ooe X Tpoy X Ty X oo X T, X X, Z; =1,

and

: Flz{lze NNy, x), if AN, +0;
fi(N:‘: [le---:Ni—19Ni+1:---:me ={ =1 =1

“don’t care condition”, otherwise,*
It can be shown [3] that &/ is isomorphically embedded in N (o4, ..., o). .|

* 1z{P(z)} denotes the unigue z fulfilling P.
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Next we define the conceptions of partition pair and substitution property
partition for NDA’s which are important when reduced dependences between the
components are regarded.

3.3. Definition. [, 1] is a partition pair (PP)of o ifi forallxin X, Ninn, z, 2’
in N and N'in 7,
Noflzx) 0N nflz,x) 0.

7 is a substitution property partition (SP-partition or SPP, for short) of < iff {1, 7] is
aPP.

3.4. Theerem. An NDA &/ can be isomorphically embedded into a loop-free net-
work of the first kind consisting of » components iff there exist a set M of SPP’s

Ty, .- -5 By @ St N of partitions 1, ..., 1, and a one-to-one mapping I’ from M onto
N' =, max (M) U N, where

(i) F(n) = = for n in max (M);
(ii) F(n) = © > = for = in M~ max (M) and some 7 in N;

(@) [ Fln) £ m;

n'sM

n'>n .
(v) JJt=0 and [[n=0;

wNT reM

{v) N7 is independent.

If max (M) = M then each component will operate independently of all ‘other
components, {Such a network sometimes is refered to as “parallel composition™.)

Proofl (see [3]). Construct the network N (s, ..., o) similarly to that of
Theorem 3.2 using the partitions in N'. However, one can show that because of (iii)
the component &/, i < n, will not depend on component & ; j > i. Hence
N(o#,, ..., o,) is loop-free. 0

3.2. Networks of the second kind

In this paper, we shall restrict cur attention to networks of two components
only, as it is usually done in literature. That will do for our purpose, i.e. to state the
characteristic properties of an NDA that can be embedded into a network of the
second kind. Hence, all statements can be easily generalized to networks of more
than two components. That is, we regard networks /" = [X, Z”, f"] consisting
of the components & | = [X,, Y, Z,, b, and &, = [X,, Z,, f,]. Without loss of
generality, we suppose &/, to be a semiautomaton for «, is independent of the
(proper) output of «,. Therefore, we have X; = X %X Z;, X, = X x Y, 2" =




=Z, x Z, and 95
[z 2] ef"([z0. 22] ¥) =

e zyefilz) [x 2]} A 2h € folza, hya(zy [ 25])) -

The following Lemma will be used when proving the main result 3.11.

3.5. Lemma. Forall z, in Z,, z; in Z; and xin X
[25. 22] e f([70 22]. x) &
e dy VI 3E(yeh (2o % 2y A 2 5 €2 A
A vegzn [x ) A Ze b2, [x, 2]} A
n 2L e (7 22 %) -

Proof. Let{z{, 23] € ([ 2\, 22}, x). Then there exists some y in h,_.{z, [x, 2,])
such that z5 € f,(z,, ). Supposed no such y fulfills the assertion of the theorem.
Then for all y &y, (z;,[x, z;]) there exists some Z, & Z, for which yeg,(Z,,
[x, z,]) such that for all | € Z,, 2} is not in hfZ,. [x, z,]} or [Z], 23] is not in
F([Z;, 22 x) Le. W{E,, [x, z,]) is empty or z3 is not a next state of the second
component for any y. This contradicts the suppositon. The rest of the proof is trivial.

O

3.6. Definition. Let z be a partition of Z. Define f' ¢ Zx X x tby [z, x, NjefT
« flz,x) "N % @. [f*is called the transitional relation of o with respect to <.
Then let R be a system of nonempty subsets of f* covering f*, Le. U R = f7.

In 3.7 and 3.8, 1, and v, are the respective partitions of Z generated by &/, and
s 5, where o =[X, Z, f] and « is isomorphic to the subautomaton &’ = [ X, AN
of «#". { is the corresponding isomorphism from &' onto /.

3.7. Definition. Define the unique functions u: Z x R x X — P(Z) and r: ¥; —
— P*Z x X x t,), respectively, by
u(z. R, x} = U{N | [z, x, N]e R}
and

() = {[z % N]{ v € hrgonll(2): [x G2D)
where ze Z, xe X, ReR and ye ¥,. u is called the function associated with R.
RY: =, {+{y) i ve Y} covers f™, and » maps Y, onto R™. R is called t,~admissible
(with respect to ), iff for all x in X
YN, VRIN{ VYN (N, Nyet, ANjer, A(N;AN) x {x} x ;" R+ 0—
~ Ny nu(ez{ze Ny A Ny), R x) n flez{lze Ny nN,), x) + 0) .

Thereby the s-operator denotes any element fulfilling the subsequent predicate.
We shall use only admissible Rs.




96 3.8. Propoesition. Forallz € Z, Re R¥tand xe X:
u(z, R, x) = ({10, (8a(2) [x, G2 x Za)-
Proof. From the definition of function 7,
(42 o 2)]) % Z3) = 20 ), [ 2D  Z2)

for some y such that y e kg mo(li(2), [x, {2(2)]) for all [z, x, N]e R. Therefore
the above expression equals

N | [z 5. N[ e R} x Z5) = UIN | [z, x, N] e R} = w(z, R, x). O

3.9, Definition. 7, R-depends on 7, iff for all x in X, Ny, N{in t,, N, Nyin 1,
such that N, n N, % 0 and some z in N; n N, the following condition hoids:

Ny ANy f{z, x) + 0 e
«IR(ReR A [z, x, Ni]Je R A VEHZ N, A Zl x [x} x i, n RF O
- Ny rulz R, x) o f(E, x) +0)).

In the following, we use @ = b{C) to denote the fact that if € is a set of subsets
of the set S, then elements a and b are in the same subset.

3.10. Proposition. 1f 7, . T, = 0 then {r,, 7,} is independent according to 3.1 ' ]
iff there exists an R (for %) such that for all z, ZinZ, x, xinXand N, N in 1, ;
[z.x,N] & [z, x,NJ(R) » z # Z'(z,) holds while 7, R-depends on 7,.

Proof. Suppose {1, 7, is independent. Define R by [z, x, N] = [, X, N]{(R)
ey z = 2'{(ty). We show that 1, R-depends on 7,. To do this we suppose
N, ANy v f(z,x) 0 for ze Ny Ny, Nyet 1= 1,2, and xeX. This is true
if and only if Ni n f(z, x) # 0 and N ~f(z, x) # 0. Therefore, [z, x, N1] is in
f7. There exists a unique R in R containing [z, x, N}]. Show that this R fulfills
the expression of 3.9. At first we note that from 7, . 7, = Oand the way R is defined,
z is the only Z for which in 3.9 the conclusion must hold. Then, R contains al
[z, x, N{] such that [z, x, Ny]is in /" Hence u(z, R, x) 2 f(z, x) and the conclusion
reduces to Nj n f(z, x} % . This proves the first part of the proposition. Similarly
one proves the rest. M

The following theorem is the main result of this paper.

3.11. Theorem. « is isomorphic to the subautomaton /" of the network s/ " of the
second kind consisting of 57, = [Xy, ¥y, Zy, by |and o5 = [ X, Z,, [, ] iff there exist
nontrivial partitions 7, and t, and an R for f* such thatz; . 7, = 0 and 1, R-depends
on ;.




Proof. (1) Let o be isomorphic to . Define R =4 {r(1) { ye Y,}. Suppose
that for x in X, N, N in 7., N;, N5 in 75, z; in N, and z;in Nj (i = 1,2) and for
some z in Ny A N, # 0

IR(ReR A [z,x, NiJeR A Vi(ZeNy A {8} x {x} x 1, n R+ 0~
- N3 v u(Z, R, x)  f{E x) %= 0))
is true. Let #~'(R) be a fixed y in ¥, such that r{y) = R. Then the above expression
is equivalent to
ay(ye ¥y A yehg (2 [x ) A VE(E e Z, A yeg (Zs, [ 1) —
S Zy x () o b (Fu[x 2]) x 2, AF([Er 22) X) £ 8)) =
< Iye ¥y A yehy (=[x ) A VE(E e Zy A yegdZn Ix 7] ~
[ 25 % ) A [ 22 £ 0) =
< 3p(y e by (20 [x 22]) A VE IE(E e Z, A yegi(E,[x ] A
A Ziehy (2, [x z]) A (2 22] e F([E 2, ], X)) <>
S EE (R z,], x) = Ny A Nj Nz, x) %= 0.

it can be easily shown that R is a 7,-admissible set system.

(2) For given o let 7, .1, = 0 and R be a set system covering f** such that 1,
R-depends on 7. Then define

o, =X x 1., R 7y, hl,
dz = [X X R= Tz,fz] -
& =X, 1 x 0],
Jf’ — {X, Zr,f,]

where

Z' =g [Ny, No] | [Ny, N2 JeZ/ A Ny Ny F 0, [:Z > Z,
where {([Ny, N;]) = wz{zeN; N,) and for [N,,N,]eZ:
[R,Ni]ehy(Ny, [x, Na]) g [z, X, Ni] € R
and
Ny e fo(Ny, [x, R]) e2g VN (N €70 A (NynNy) x {x} xt;, nR% 0~
- Ny nu(iz(ze Ny o NpL R, ) f(N, ANy X) # 0).
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Since R is 1,-admissible, f; is not empty. We prove that { is an isomorphism. {Then
o' is closed, i.e. /' is a subautomaton of &)

Let {z} = N; n Ny, {z'} = N{ N and x € X. Then we have
Zef(z,x) o Ny n Ny flz, x) & 0
«3RReR A [z,x, Ni]Je R aVEZeN, A {Z} x {x} x 1, " R £ 0
= Ny nvu(z, R, x) n f(Z, x} + 0)}
“gror IR(RE Y, A Rehyy (Ny, [x,N;]) A Ny ef(N,, [x, R])) &

o &t 3}

P [N;_, N;] Ef”([Nl, _Nz], x) P
o [Ny, Nyl e f([N1, N2], %) &
w N2y e /Y z), %)

| {1

If there exists an R according to 3.10 then &/ can be realized by a network the
two components of which operate independently of one another in the sense that,
to perform its own operation, no component needs information about the next
state of the other one. A first kind network will result in this case. The component
o, of o depends to the highest degree on &, iff there is no R > R, =4
=g {{[zx, N} |xeX A [z,x, NJef"}|zeZ A Nye1;} such that 1, Rede-
pends on 1,. For every 1., any 1, Ry-depends on . Hence we have:

which was to be shown.

3.12. Corollary. For every finite NDA . there exists an R = R such that .« can
be embedded isomeorphically into a network of the second kind where o) =
=[X x 15, R, 1y, Ay ] 0O

Investigating loop-free networks here we are concerned only with the case that
component &7, does not depend on component &7,, for the remaining case would
lead to a first kind network treated in section 3.1.

3.13. Definition. 7 is an R-SP-partition (or has the substifution property with
respect to R} iff
[z,x,N]eRe [Z,x,N]eR

forallRinR, z, 2" in Zsuch that z = z'(z), N'inrand x in X

3.14. Proposition. (i) 7 is an R-SP-partition implies that ¢ is an SP-partition. (ii)
Let 7 be a partition and let R* be any set of subsets of f* which covers f* such that
z % z'(r) implies [z, x, N] % [z', x, N'] (R*). Then 1 is an R*-SP-partition if t
is an SP-partition.




Proof. The proposition follows directly from the definitions of SP-partition,
R-SP-partition and that of R*, ]

3.15. Theorem. The NDA &/ can be embedded into a network =/ of the second
kind (with two components) the first component of which operates independently
of the second one, iff there exist partitions 7, and 7, and an R for 7, such that

i} 7, is an R-SP-partition;
() 1 P

(i) 7, .72 = 03

(iii) 7, R-depends on 7,.

Proof. Similar to that of 3.11. Since 7, is an R-SP-partition, k, does not depend
on T,. il

4. THE REALIZATION OF THE NETWORK OUTPUT
BY COMPONENTS

In the foregoing sections, we investigated the “decompasition properties” of
ND-semiautomata. From that we saw that the “state behaviour” of the given NDA
& can be realized by (decomposed into) a network which operates up to a one-to-
one correspondence in the same manner as the state block of & (see Fig. 1 (a) or (b)).
Thus, «/ can be completely realized by simply adding the output block to the net-
work. Now we shall study the properties of an NDA o which is “completely de-
composable™ that is, it can be decomposed into a network of smaller NDA’s which,
in common, realize the output of &, too.

4.1. Definition. Let o = [X, ¥, Z, i] be a network of the first or second kind,
respectively, consisting of 7, ..., &,. The compongnts realize the network output
" n
iff of, = [X, Yo Zp b} i=1 .. n Y= X Y, and [y, 2] e bz, x) & A [vs zi €
i=1 =1
e hfz, x;) where y=[y,...n}l z=[z0..0 zo) 2 = [2%, .., z,] and x; =
= {20 ez X] and X; = [¥1, oo Vim 1 205 oo Zo x], respectively.

4.2. Definition. Let ¢; be partitions of Y, t, partitions of Z and x; = [eo 7]
i=1,...,n for o =[X,Y Z h]. Then call the set ¥ = {21 --» Xny independent
(with respect to &) iff .

B bid
@4 NP, x N bz, x) = A (P, x Nyovi(z, x) * 0}
=1 f=1

forall P,ing;, N;in1, zin Z and x in X,

4.3. Theorem. The NDA of can be isomorphically embedded into a network of the
first kind the output of which is realized by the components iff there exists an inde-
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100 pendent set V = {3, ..., %}, n > 1, of pairs of partitions as defined in 4.2 fulfilling

J17 = 0and J]eo; = 0 where the s are all nontrivial.
i=1 ‘ i=1 .
Proof. Analogous to 3.2 if one substitutes f by # and the f;’s by &;’s. ]

4.4. Remark. Not every NDA can be embedded isomorphicly into a first kind
network according to 4.1.

Proof. This is true even for ND-semiautomata. (]

Regarding networks of the second kind, we restrict ourselves again to considering
only two-component networks. In the following, let x, = o1, 7, and 5 = [02, T2}
be pairs of partitions of Y and Z, respectively. We suppose the ‘internal’ output
of component ., to be independent of those output signals belonging to the first
component of the network output. Hence, Y, = Y§ x Yy, and we can ‘decompose’
h, into two functions, k% and h{ in the following way:

hy(zy, [x, )=

= U hio{ze [x 2,0) x hi (20 [x 2:]) % {z\}.
z2'y8fe(zy.[x,22D)
As the second component automaton provides only its present state to be used as
“internal information”, we identify h, and h} (see Fig. 4).
If k% and k! depend on one another, we can regard o, to have only one output
function h;. :

H *

I
1 y&g
1 1
Fig. 4. A second kind network of two components where the network output is realized by the
component aulomata.

4.5, Definition. Let R be a set system covering /. y, R-depends on x, provided
that
_ [y, 2] €h(z, x) = (P; x N}y h(z,x) + 0 A
AAR(ReR A [z,x,N{]e R A VEZeN, A Flx x} xy,nR+0-
— P, x (u(Z, R, x} 0 N3) ~ h(Z, x) + 0))
for all P, in gy, P, in g5, yin P, n Py # @, N, Ny in 1,, Ny, Nj in 75, x in X and
for some z in N, n N, 4 0 and some z" in N{ n N, + 6.

4.6. Theorem. </ can be embedded into a network of the second kind, the output
of which is realized by its components according to 4.1, iff there exist partitions




o, and g, of Y, nontrivial partitions 1, and 7, of Z and some R such that [e2 7,]
R-depends on [g;, 7.} and ¢y . @3 = Oy, 7. . 12 = ¥z (the respective zeropartitions),

Proof. Similar to 3.11 if f is substituted by A, 0

5. EXAMPLE

The autonomous NDA . = [{x}, {1,2,3,4}, f]is to be decomposed into a net-
work of two components provided f is defined as follows:

13

| i |
/2 U T R 4
! i

i L

S|y By 0

The only candidates for the state partitions are 7; = (1,2/3,4), 1, = (1, 3/2, 4), and
1y = (1, 4/2, 3). However, there does not exist any network of the first kind with
two components into which =/ can be isomorphically embedded because neither
M, = {7, 1.}, My = {1, 13} nor My = {1,, 73} are independent sets. We select 7,
and 7, for state partitions. Omitting x, we have:

F7 = {1, N1, N,[2, Ny 3, NoJ4, N [4, No}
(The blocks of t; and 7, are denoted by Ny, N, and M, M, respectively.)

If the second component is in state {3, 4}, then it needs information about the
next state of the first one. That is because & does not have the next state 3 if the
present state is 4, however, it is (4, x) (3,4} +0and f {4, x)n {1,3} & 0 while
f(4,x) n {3, 4} n {1, 3} = 0. Hence, we must investigate the following cover of
% which separates the transitions 4 — N, and.4 —» N,:

R =g (1 Ny/1, Nof2, N3, Naf4, N J[1, N, 1, N, {2, N, 3. N3 [4. N)

Rl R2
This implies: |
z 12 3 4 ] T2 3 4
R R, | R,
WaB 7 NN Ny ] Z N, N, Ny

One can easily verify that 7, really R-depends on 7,. Now we construct of  and o 52
o, = [{x} x 15, R, 1y, hy] where h, is defined as follows:

:\\il My 1 My
Ny (R, ML IR, N3], IR, N1 [Ry, Ny}
[Rza f\rg]-: [st Nz}}

Ny {IRy, Mol [Ry, Nz]} {{Rz, Nl ERg, N1}
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oy = [{x} x R, 15, f,] where f,:

:\\\\j Ry ‘ Ry

2 B -
S B
M, MMy | ()

This implies & = [{x}, 1, x 75, f"] where

£ ' (N, M,] Ny, M,] [Ny, My] [Ny, M,]
X {Ivy, My, {ivy, M3, {IN, M1} (v, M, Ny, M,
[N, M1} [Ny, M,1} [Nz, M1}

Obviously, < is isomorphic to o/

Note that instead of R we could have chosen every smaller cover than the above
one, e.g. R = (1, N /1, N,j4, N[{2,N,/3, N,J4,N,). The only restriction is that
[4,N,] and [4, N,] are separated. Possibly, this freedom can be used for finding
‘simple’ components.

(Received August 5, 1974.)
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